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Abstract. A hard line-segment barrier lies in a periodic cell in the plane, parallel to one 
edge, and half its length. This constitutes perhaps the simplest pseudo-integrable system, 
and the classical motion of a particle within it admits concise analysis. The hitting and 
missing of the barrier defines a quasi-periodic (doubly periodic) sequence with the period 
ratio depending on the invariant lgradientl of the trajectory. The consequent motion is 
expressed in terms of its continued fraction expansion. Rational gradients correspond to 
‘periodic’ orbits which can be classified in full. Quadratic irrational gradients lead to 
trajectories of calculable fractal dimension (or power-law correlation decay). 

1. Introduction 

A plane containing a lattice of hard obstacles off which a particle bounces provides 
one of the simplest realisations of a two degree of freedom Hamiltonian dynamical 
system [l]. An example is the ‘Sinai billiard’ where the obstacle is a circle yielding 
ergodic motion [2 ,3] .  No obstacle at all, on the other hand, would trivially exhibit 
integrable motion. We shall consider perhaps the simplest obstacle: a hard line-segment 
barrier parallel to one edge of the periodic cell and half its length. In the full plane 
this produces an infinite set of parallel dashed lines with equal ‘mark’ and ‘gap’ lengths. 
It suffices to treat a standard representative form (figure 1) with barrier ends lying at 
integer lattice points. (Any other form is equivalent through a linear transformation.) 

The motion in this system is certainly not ergodic: a particle, once started, explores 
only two different directions, not all directions. On the other hand, neither is the 
system integrable because the connectivity of the sheets explored in phase space is not 
topologically that of a torus, but rather a two-handled sphere. The multi-handledness 
arises from the constants of the motion failing to commute at isolated points (barrier 
ends), and means that the motion is described by an interval exchange mapping rather 
than a rotation mapping (appendix 3). Such systems have been called pseudo-integrable 
[4], (or earlier, ‘almost integrable’ [ 5 ] ,  or ‘A-integrable’ [6]). 

The essential distinction between integrable motion, say that in a square box, and 
our pseudo-integrable motion can be understood physically. In both the box problem 
and our barrier in a periodic cell problem, the true path of a particle (with its direction 
changes at bounces) can be conveniently represented by a straightened path: a straight 
line with the same initial position and gradient, and the same length (figure 2). For 
our problem every passage of the straightened trajectory through a barrier corresponds 

8 Present address: H H Wills Physics Laboratory, University of Bristol, Tyndall Avenue, Bristol BS8 ITL, UK 

0305-4470/90/060887 + 13603.50 @ 1990 IOP Publishing Ltd 887 



888 J H Hannay and R J McCraw 

c 

r 

I 

Figure 1 .  The trajectory from the origin with gradient (4% 1)/2 looks similar on two 
different scales. The lower picture has been scaled anisotropically ('affinely') by a factor 
9+4v'5 horizontally and 3 +2J2 vertically. 
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Figure 2. Construction of the straightened representative (faint line) of a trajectory (bold 
line)-each barrier passage of the former corresponds to a bounce of the latter. 

to a bounce of the true trajectory. Similarly for the square problem, every passage of 
the straightened trajectory through lines of an infinite square net corresponds to a 
bounce on a wall of the box. In this latter case the position vector of any point on 
the straightened path uniquely determines the true position in the square box (without 
knowledge of the sequence of intermediate squares the straight line passes through). 
This characterises the system's integrability. For the pseudo-integrable system this is 
not so-there is a two-fold ambiguity in the true position (and gradient) in the periodic 
cell, depending on the number of barriers the straightened trajectory has crossed (i.e. 
the number of bounces of the true trajectory). Such ambiguities characterise pseudo- 
integrable systems. Our system is particularly simple because momentum parallel to 
the barrier is conserved, so this component of the motion is trivial. 

Other examples of pseudo-integrable systems are motion inside a regular hexagonal 
enclosure, or, closer to our system, a 60" rhombus enclosure as studied by Eckhardt 
et a1 [6]. Indeed, these authors reduce the rhombus billiard to a barrier billiaid (with, 
however, the gap length half the barrier length). An explicit formula is then written 
down for the trajectory as a sum of increments, positive or negative, according to 
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whether or  not a barrier is encountered. They show that the formula is algorithmically 
non-complex (unlike an  equivalent prescription for a chaotic system like the Sinai 
billiard), and consider it therefore to constitute a solution. It is not, however, an  
effective algorithm in the sense that a computation is required for each step (to find 
out whether a barrier is hit o r  missed). We find for our problem an  algorithm which 
is faster than merely following the trajectory itself computations are of the order of 
In(1ength) rather than of the order of length (see section 3 below). Actually Eckhardt 
et a1 also mention ([6], appendix A)  the present equal barrier/gap problem and take 
preliminary steps towards the route developed here (we are grateful to a referee for 
pointing this out to us) .  

The character of the motion in our barrier system depends crucially on the rationality 
of the initial gradient. This can be understood by considering the straightened trajec- 
tory. For a rational initial gradient this sequence of barrier passages repeats itself 
periodically, while for an  irrational one the sequence is quasi-periodic (doubly peri- 
odic). The true trajectory is therefore, respectively, a repeating zig-zag shape, and a 
non-repeating one, such as that in figure 1, which shows the trajectory with gradient (a- 1)/2, the golden ratio, starting from the origin. As our analysis shows, this is a 
self-affine fractal, Y - x ? - ~ ,  where the dimension D is 2 - ln(3 + 2&)/ln(9 + 4 8 )  = 
1.3984.. . . If it had not started from the origin it would generically be a statistically 
self-affine fractal with the same dimension. ( A  close analogue would be the Weierstrass 
function with or  without random phases [7].) 

The bound version of the problem (the single obstacle in a periodic cell) is easily 
inferred from that in the extended version. The rational trajectory becomes a periodic 
orbit, closing and retracing itself. The golden ratio trajectory does not close but passes 
arbitrarily close to every point in both available directions. The fractal dimension 
would show up through the power-law decay of the gradient (d Y/dx)  - x’-? Power- 
law correlation decay like this has long been conjectured in pseudo-integrable 
systems [8,9]. 

In fact, we will not need to distinguish, in our calculations, between the cases of 
rational and  irrational gradient. The latter will be treated, as is usual in quasi-periodic 
(doubly periodic) systems, as the limit of the sequence of rational approximations 
generated by the continued fraction expansion [ 101: 

(1) Igradientl = a, + 1/ ( a ,  + 1/ ( a 2  + 1/ ( a3 , . . . 
For a rational gradient this terminates at some a , .  For quadratic irrationals (roots of 
quadratic equations with integer coefficients) like the golden ratio, the a ,  become a 
repeating sequence, that for the golden ratio being 1, 1, 1, 1 , .  . . . For typical irrationals 
the a ,  form a random sequence with known statistical properties. 

Our goal, then, is to find the vertical displacement Y (  q, p )  of every trajectory whose 
straightened representative runs from the origin to a primitive point ( q ,  p )  of the integer 
lattice (one whose q and p share no factors, so that the trajectory hits no lattice points 
on the way). More precisely, we seek to relate such displacements Y to each other 
so that long trajectories can be built from short ones or  vice versa. This procedure 
deals with irrational trajectories like that of figure 1, which start from the origin. Ones 
which d o  not are also described by the displacements Y, albeit less explicitly: the 
displacements Y actually represent displacements of bands of trajectories, only the 
edge ones of which hit lattice points-these are the ‘periodic orbit bands’ in the bound 
version of the system (appendix 1). Any irrational trajectory is approximable for a n  
arbitrarily large length by a member of a band of a close enough rational. An alternative 
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explicit procedure for the analysis of a trajectory between arbitrary points is outlined 
in appendix 2 .  

8 are shown in figure 3 .  We 
shall always assume p > 0 since Y (  q, - p )  = - Y(q,  p )  by symmetry. It also suffices to 
show only those points with 141 S p  because Y ( q  + 2 p ,  p )  = Y(q,  p )  (under the implied 
even shear of the plane, barriers map into barriers). The asymmetry of the values of 
Y on the right and the left is striking (though we shall not use this explicitly). We 
may now anticipate, with some examples, the essence of the full analysis of the next 
section. 

The displacements Y (  q, p )  for q, p coprime with p 

Figure 3. Vertical displacement values Y (  9, p )  of trajectories whose straightened representa- 
tives run from the origin to primitive integer lattice points (9, p ) .  The true trajectory thus 
zig-zags from the origin to (9, Y ( q , p ) ) .  

Each displacement value can be expressed as the sum or difference of two other 
values. For example Y ( 3 , 8 )  = Y ( 2 , 5 ) +  Y ( 1 , 3 ) .  The reason is that ( 2 , 5 )  and ( 1 , 3 )  
span a parallelogram of unit area whose diagonal is ( 3 , 8 ) .  Since it has unit area it 
encloses no lattice points (barrier endpoints) so that the diagonal is 'deformable' into 
either of the 'two-leg' parallelogram routes. Now, the leg (2 ,5) - (3 ,8)  is equivalent to 
(0, 0 ) - ( 1 , 3 )  since both start at left barrier ends, hence the stated relation. In contrast, 
however, the leg (1 ,3) - (3 ,8)  is not equivalent to (0,O)-(2,5), but rather it crosses the 
same sequence of barriers as (0,O)-(-2,5),  so from this route we have Y ( 3 , 8 )  = 
Y (  1 , 3 )  + Y (  - 2 , 5 ) .  Combined with the first relation, evidently Y (  - 2 , 5 )  = Y ( 2 , 5 ) .  
Subtraction rather than addition occurs when the number of barriers crossed by the 
first leg is odd, so that the starting gradient of the second leg is negative, for example, 
Y ( 2 , 7 )  = Y ( 1 , 3 ) -  Y ( - 1 , 4 ) .  The general rule (for q ' p " - p ' q " =  i l )  is 

( (  - 1 ) q'"', P") y(q '+q",p '+p")  = y ( q ' , p ' ) + ( q " p ' - p " q ' ) ( - l ) ' 4 ' + ' ) ' P ' + ' ) / 2 y  

( =the  same with primes and double primes exchanged). ( 2 )  

2. String construction 

We recall the standard string construction of Klein [ l l ]  (figure 4 )  for continued 
fractions. A taut string runs from the origin to infinity with an irrational gradient 
whose continued fraction is sought. There is imagined to be a nail at each point of 
the unit lattice. When the origin end of the string is now moved one unit up to (0, I ) ,  
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Figure 4. The string construction for continued fractions (from Arnold [ 121). The positions 
ri = ( s i ,  p k )  where the displaced strings (bold line) bend correspond to successive rational 
approximants, pA/ql ,  in the continued fraction of the gradient of the undisplaced string 
(faint line). 

the string catches on a certain sequence of nails above its previous path, bending at 
some and merely touching others without bending (e.g. (1,2)). Similarly, if the end 
is moved to (1, 0), another sequence below is picked out. Together the two sequences 
of bending positions ( q k ,  P k )  form the successive approximants P k / q k  to the irrational 
gradient formed by truncating the continued fraction at a k - l  (the k - 1, rather than k, 
here, follows Arnold's convention [12]). The upper sequence gives the even values of 
k, and the lower one the odd values of k. Between each bend the string is divided 
into a number of equal subsections by nails which it touches without bending. These 
are the ai of the continued fraction (1 < a, < a). The successive corner positions ( qk ,  p k )  
ob+ the recursion relations (using Arnold's convention) 

and the unit area rule 

We can now interpret this construction in terms of trajectories. The string from 
the origin represents a straightened irrational trajectory. Consider the barriers which 
it crosses (bounces of the true trajectory). When the string is pulled aside i f  still crosses 
the same barriers since the barrier ends have nails which the string does not pass over. 
This means that just as the irrational gradient g emerges from the sequence of bending 
points ( q k ,  p k ) ,  so also the (vertical) displacement of the irrational trajectory emerges 
from the sequence of the displacements of the rational trajectories from the origin to 
( q k ,  P k ) .  Each such rational trajectory crosses the same barriers as the corresponding 
stretch of the irrational line, namely (0,O) to (pk/g,  p k ) ,  and therefore has equal 
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displacement. The geometry which generates the recursion relation (3) for p ,  generates 
a similar one for displacements, as follows. 

Let Y i  = Y(qh, p L )  denote the (vertical) displacement of the trajectory (whose 
straightened representative runs)  from (0.0) to rh = ( q L ,  p h ) .  It will also be convenient 
to define Y ;  = Y ( - q h ,  p , ) .  Thus Y ;  is the displacement in the 'dual' system in which 
barriers and  gaps are exchanged (as  achieved by reflection in the vertical axis). This 
allows us to restrict attention henceforth to q>O, as is intended in the string con- 
struction. 

Consider the triangle with vertices at the origin, r h - l ,  and r A T 1 .  The edge between 
the last two vectors is divided, by lattice points, into U, equal subsections. Equating 
the displacement along rh+l to the sum of those along the other two sides, we have 

Y;+l = Y;-l  * Y ;  * Y ;  . . . * Yf ( U ,  such terms in Y k ) .  ( 5 )  

The sign and  the superscript of each term here are decided by the lower endpoint of 
its subsection. For the mth subsection ( O S  m S  U, -11, this point is rh,m = 
( q A - 1  + mq,, p k - I  + mp,). The superscript of the subsection is ss(r, m )  where 

d q ,  p )  = ( - l lq .  (6) 

( 7 )  S T (  q, p )  = ( - 1 ) ' Y - l ' i P t l '  2 

The power ( q + l ) ( p +  1)/2, here, is the number of lattice points, excluding the 
origin, in or on the right-angled triangle with vertices the origin, (0 ,  p ) ,  and ( q ,  p ) ,  
(recalling that q, p are coprime). These lattice points are paired off by barriers except 
those ( n  of them, say) at the inner end of barriers which cross the hypotenuse. And 
it is ( -1lf l  which gives the required sign of the subsection if k is even, and  -(-1ln if 
k is odd (as then the point ( q , p )  does not count). There is a similar formula to ( 5 )  
for Y;+l with all the superscripts reversed, and  a sign function s - ( q ,  p )  = -s'(-q, p ) .  
Since the superscript and  sign functions are all periodic with period 4 in q and p ,  the 
sum of the U, terms reduces to a sum of four terms. With [ ] denoting integer part, 
we have 

The sign is ( - l )hT1sT(rh.m)  where 

or, collecting terms: 

M" M'-  1 0 Y ;  

0 0 y ;_ ,  

with 

M m P  = (-l)kT1i(l + @ ( ~ A . o ) ) { [ ( ~ A  +3)/4Is"(r~,o)+[(ak + 1)/41se(rk,2)I 

+ ( - l ) k * ' $ ( l  + @ s s ( r k . l ) ) { [ ( a A  + 2 ) / 4 1 s " ( ~ ~ , ~ ) + [ ~ k / 4 ~ ~ " ( ~ k , 3 ) ~ .  (9) 
The sequence of 4 x 4 matrices above governs the growth of the displacement Y l  

of the trajectory through the continued fraction expansion of its gradient. Each matrix 
evidently has unit determinant. Its elements are determined by the current continued 
fraction element ak, and the quantities q k - l ,  pk- l ,  q k ,  pk mod 4. These in turn are 
determined by the previous sequence of a, mod 4 through the recursion relations ( 3 ) .  
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For a trajectory with quadratic irrational gradient the sequence of elements ak becomes 
periodic. This means the q A - ,  , P k - 1 ,  qh, p k  mod 4, and hence the whole 4 x 4 matrix, 
will become periodic too. The asymptotic growth with k of the vertical displacement 
Y l  (and Y ; )  is governed by the largest eigenvalue A of the product of all the 4 x 4  
matrices in one period ( 1  of them, say). Similarly, the asymptotic growth with k of 
the horizontal displacement qk is governed by the largest eigenvalue p of the product 
of 1 successive continued fraction matrices ( 3 ) .  Thus Yk - A k ”  and qL - F ~ ” ,  so that 
y k  - st A/In P . As a non-integer power law, this represents a fractal with dimension 
D =2- ln  A/ln p. In figure 1, for example, the period 1 of the 4 x 4  matrix is 6, 
A = 3 + 2 d 2 ,  and p =9+4J5.  

The four quantities Y l - , ,  Y ; - l ,  Yl, Yk are not independent. They are related by 
two equations based on the displacements along the edges of the parallelogram spanned 
by rh-l and r,.  The net displacements along either route from the origin to r k - l + r k  
must be equal since the parallelogram encloses no lattice point (like any unit-area 
parallelogram). This gives one equation, (corresponding to equating the two alternative 
right-hand sides of ( 2 ) ) ,  and  the other is the same requirement for the dual system. 
The two relationships allow the four displacements Y to be expressed either in terms 
of just Y l - ,  and Y:, or  Y i - l  and Yk,  depending on the set qk-1, pk- l ,  q k ,  p k  mod 4. 
This means that the 4 x 4  matrix can be reduced to a 2 x 2  matrix with, again, unit 
determinant. The 2 x 2  matrix turns out (appendix 4) to have a remarkably simple 
form for each of the 24 possible sets mod 4 allowed by the unit-area rule (4). 

3. Discussion 

We have given the algorithm relating the vertical displacement Y ( x ,  y )  of any trajectory, 
with horizontal displacement x from the origin, to the continued fraction of its gradient 
( y / x ) = g .  It is exponentially fast in the sense that if the kth approximant of the 
continued fraction is (Pk/qk)  the algorithm requires k operations (4 x 4 matrix multipli- 
cations) to determine Y(qh, P k )  ( = Y(p , /g ,  p k ) ) ,  and typically P k  increases exponen- 
tially with k (see below). 

Quadratic irrational gradients give orbits with calculable fractal dimensions. The 
question naturally arises: can one find a fractal dimension for a generic irrational 
gradient? We are not able to answer this question. Numerical investigation suggests 
that a generic trajectory has dimension 1.5 (as does the path in spacetime of a 
one-dimensional Brownian motion). Two methods were used. 

Firstly the product of the matrices (9) was formed using continued fraction elements 
ak generated by iterating the continued fraction mapping (reciprocation and truncation) 
with an  arbitrary initial number g. The chaos of this mapping quickly simulates a 
generic number irrespective of g .  The results were consistent with Yk - 
exp( k.rr2/24 In 2 ) .  Since the mapping is known ([ 101 page 75, [ 131 page 320) to give 
pk - exp( k.rr2/ 12 In 2), this would imply Yk - J p k ,  and hence D = 1.5 (where Y k  - 

Secondly, the numerical average, ( Y ) ,  over x, of the displacement of a (straightened) 
trajectory from (0,O) to (x, y ) ,  is consistent with ( Y ) - J y .  This relation is equivalent 
to a tantalising purely mathematical one: that the integral over one period of the 
product of square waves, 

Pi-”). 

s q ( z ) s q ( 2 z ) s q ( 3 z ) .  . . s q ( p z )  dz  with s q ( z )  = (-1)12] (10) I 
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diminishes as 1/Jp as p + 03. (This integral is easily verified to be the increment of 
( Y )  as y increases across p . )  The integrand changes sign at values of z which are 
rational fractions with denominator S p  (‘Farey fractions’ [ 14]), and it is possible, as 
was pointed out to us by J P Keating, that the power f we seek is connected with the 

If the generic motion is indeed a fractal of dimension 1.5, it must differ from a 
random walk in an important respect [6] .  A random walk is chaotic in the sense that 
its information content is proportional to its length (one bit of information per step), 
whereas the information content of our trajectory increases only logarithmically with 
its length, as discussed above. The random Weierstrass-Mandelbrot function [7] of 
dimension 1.5 is an example of a fractal having this property. 

There remains the question of generalisation. The unit barrier to gap length ratio 
played an important role in our analysis. Can one progress without it, perhaps to 
rational ratios? Or, more interesting, does our special system have any implications 
for pseudo-integrable systems in general? Finally, one might seek to quantise the 
system, either as a two-dimensional Bloch problem or, using the feature noted in the 
introduction, as a one-dimensional quantum map. The straightforward enumerability 
of the periodic orbits makes it attractive for semiclassical orbit quantisation, though 
the orbits would not account for corrections due to scattering, inherent in any pseudo- 
integrable system, from the singularities (‘Sommerfeld scattering’ from a barrier end 

of the Riemann hypothesis via the Farey fractions [ 151. 

[161). 

Appendix 1. Periodic orbits 

In an orchard with a square lattice of trees one sees ‘avenues’ in every rational direction, 
the width of each being inversely proportional to the spacing of trees along it, so that 
the low-order rationals are most conspicuous. On our unit lattice such an avenue can 
be considered as a band of (straightened) trajectories with rational gradient. All except 
the edge members of this band miss all lattice points and represent true trajectories 
which perform identical zig-zags. We shall call these trajectories ‘periodic orbits’ 
because in the torus picture of the single unit cell, each closes and retraces itself 
periodically. 

The periodic orbits of this system, as of any Hamiltonian dynamical system, merit 
study because non-periodic orbits can be approximated by them. They fill phase space 
with uniform density [17, 181 and form the only known basis for the semiclassical 
quantisation of non-integrable systems. Their classification is simple for our system, 
and since each band has, on its edge, lattice points of which some are equivalent to 
the origin, their study reduces to that of the previous section of rational orbits starting 
from the origin. 

The phase space surface associated with each rational direction (4,  p )  is covered 
by one, two or three bands of periodic orbits. These cases have, respectively, (4, p )  = 
(odd, odd), (odd, even), or (even, odd). To see this we first construct a one-dimensional 
spatial section consisting of one barrier and one gap wrapped into a circle (figure 5 ) .  
To follow a trajectory, numbered marks would be made on this circle indicating the 
successive positions where the trajectory hits any barrier or gap. The numbers corre- 
spond to the y coordinate, and the mark mapping is simply rotation by q / p .  In fact 
the marks are superfluous because each arc of angle r / p  (starting from a barrier end) 
maps rigidly, so the numbers can refer to arcs rather than marks. For a full description 
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odd, odd 
(3.51 

odd, even 
(3.41 

even, odd 
(2.31 

Figure 5. Periodic orbit bands displayed as numbered sequences of arcs mapping around 
a circle representing one barrier and one gap. Primed and double primed sequences 
represent the separate bands which are present i f  the gradient p / q  of the orbits is not 
odd/odd. Numbers outside the circle indicate positive gradient, those inside indicate 
negative gradient. 

one needs also to know the direction (positive or negative gradient) after the encounter, 
so we write the number outside the circle to indicate positive gradient, and inside for 
negative gradient. Thus any number on the gap semicircle is 'like' its predecessor 
(both outside or both inside), while any on the barrier semi-circle is unlike its pre- 
decessor. 

The possibilities are, by symmetry, exhausted by the examples illustrated. For 
( 4 ,  p )  = (odd, odd) the entire phase space sheet is covered by a single band of orbits 
with horizontal displacements 4q.  For (odd, even) there are two bands with 2q. For 
(even,odd) there are three bands with horizontal displacements q, q and 2q. All 
combinations have the same total displacement 4q, as they must to cover the sheet 
fully. The total vertical displacement is, for the same reason, zero in each case: the 
4 q  combination has zero vertical displacement, the two 2 q  ones have equal and opposite 
displacements *( Y (  q, p )  + (-l)(9+1)(p+')'2 Y ( - q , p ) ) ,  and finally q and q have equal 
and opposites f Y ( (  - l ) (q*1)(p+l) '2q,  p ) ,  while 2 q  has zero displacement. 

Appendix 2. General reduction rule for gradients 

Let A and B be general points in the plane (not lattice points). The straight line 
between them represents a straightened trajectory, and the product of the signs of the 
gradients at its ends is (-l)", where n is the number of barriers crossed by the straight 
line. This quantity can be easily and usefully related to an equivalent quantity (-1)"' 
for certain other lines A'B' in the plane. 

For example, if A'B' is the reflection of AB in the diagonal mirror line x = y ,  then 
n + n '  can be considered as the number of barriers crossed by AB plus the number of 
mirror image (i.e. vertical) barriers it crosses. These two sets of barriers superimpose 
to form square enclosures in the plane, and since n+n' is the number of entrances 
and exits from these, it is evidently even if A and B are both outside, or both inside 
these squares, and odd otherwise. The function [ x +  l][y + 13 is 1 inside and -1 outside 
such squares, so we have 

(-l)fl = ( - l )"(- l )"+n 
= (-  1)" ( -  l ) [ x A + l ] (  - l ) [ x t l + l l  (-l)['Afll(-l)[rB'll 

Another example is horizontal shear: x i  = X, + ay,,  y k  = y,, and likewise for B, 
with a being an integer. If a is even, then the images of the barriers under this 



896 J H Hannay and R J McCraw 

transformation are again barriers, so n = n'. If a is odd, then alternate rows of barriers 
are imaged to rows of barriers again, but the rows in between are imaged into gaps 
instead. The original barriers and their images then superimpose to form continuous 
horizontal lines at odd-integer heights and nothing at even-integer heights where the 
original barriers and their images csncel. Thus: 

( - 1 ) n  = ( - 1 ) n ( - I ) n + n  = (-""(-1)['4''l(-1)['R/Zl. 

The transformations of these two examples taken in succession constitute the 
continued fraction transformation (3). The inverse transformation, with a chosen as 
the integer part of the gradient of AB (provided it is greater than unity) can be used 
for the systematic shortening of the separation AB until the gradients at either end 
are sure to be equal. Indeed, this is an alternative route to the equations (9) derived 
by the string construction. Its advantage is that it copes with trajectories which d o  
not pass through the origin. Its disadvantage is that it supplies gradients, which need 
integrating to yield displacements. 

Appendix 3. Phase space geometry: topology and interval exchange mappings 

A typical trajectory in a (two degree of freedom) pseudo-integrable system explores 
a two-dimensional surface in its four-dimensional phase space which, however, is not 
a torus. It is easy to see that the topology of this surface for our system is a pair of 
tori connected by a 'neck'-i.e. a two-handled sphere (figure 6).  The neck corresponds 
to the barrier which converts upward to downward motion and vice versa, as indicated 

Figure 6.  The double  torus, o r  two-handled sphere surface explored by a trajectory in the 
barrier billiard. The neck joining the tori represents the barrier, and the dotted lines, the 
gap.  Arrows show the directions of motion on the sheets, which a re  related indirectly to  
the directions on  the plane.  
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by the arrows. It does not affect motion on the other two sheets of the tori, which 
correspond to passage through a gap (dotted), upward or downward. There is a simple 
rule for the number of handles of the phase space surface for motion in rational 
polygon enclosures [ 191. 

The description of the motion as an interval exchange mapping is illustrated in 
figure 7 .  Here a vertical unit with an initially positive gradient (shaded strip) and  one 
with an  initially negative gradient (unshaded strip) are mapped by following their 
motion two units to the right. One section (interval) of the shaded strip has shifted 
into the unshaded area, indicating conversion to negative gradient, and  vice versa. 
Sections which have escaped from the vertical unit have been shifted to an  equivalent 
position within it. Such mappings where intervals are shifted so that their order is 
changed (interval exchange mappings) have been extensively studied [20]. T”ey are 
known to be ergodic, indeed ‘weak mixing’. This is expressed by: 

where A and B are arbitrary initial intervals with lengths p ( A )  and p(B), and 
p(1’An B) is the length of the overlap of B with the image of A under j iterations 
(lots of little pieces as j -+ E ) .  If the mapping were mixing the summand itself would 
tend to zero as j + E, meaning that the little pieces become uniformly spread out. The 
weak mixing condition allows occasional reclustering with diminishing frequency. 

Figure 7. Interval exchange displayed as  a mapping of unit vertical double  strips (intervals) 
by horizontal motion ( i t  is vice-Lersa in figure 5 ) .  Sections of positive gradient strip ( shaded)  
are  shifted into the negative gradient area by a bounce on a barrier ( a n d  vice-versa). 
Sections escaping from the unit vertical are considered restored to equivalent positions 
within it. 

Appendix 4. Displacement recursion matrix reduced from 4 X 4 to 2 x 2 

As indicated in the main text, only two of the four quantities Y ; ,  Y ; ,  Yt- l ,  Y;-l are 
independent. All four can be expressed in terms of Y ; ,  YL-, if any one of the pairs 
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(qk, Pk), ( q k - i  3 Pk-l), (qk+qk-l ,Pk+Pk-i) is of the form (3,o) mod 4, Or (3,2) mod 4. 
Otherwise (that is, if any one is of the form ( I ,  0) mod 4 or (1,2) mod 4) all four are 
expressible in terms of Y;,  Yk-l. If (+k is defined as 1 for the former case, and -1 
for the latter case, then 

( Y?;i )=M( ") 
y>+, Y>-* 

where M is given as follows: 
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